Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Mol Biol Cell ; 27(25): 4002-4010, 2016 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-27798241

RESUMO

Eukaryotes contain three essential Structural Maintenance of Chromosomes (SMC) complexes: cohesin, condensin, and Smc5/6. Cohesin forms a ring-shaped structure that embraces sister chromatids to promote their cohesion. The cohesiveness of cohesin is promoted by acetylation of N-terminal lysines of the Smc3 subunit by the acetyltransferases Eco1 in Saccharomyces cerevisiae and the homologue, Eso1, in Schizosaccharomyces pombe. In both yeasts, these acetyltransferases are essential for cell viability. However, whereas nonacetylatable Smc3 mutants are lethal in S. cerevisiae, they are not in S. pombe We show that the lethality of a temperature-sensitive allele of eso1 (eso1-H17) is due to activation of the spindle assembly checkpoint (SAC) and is associated with premature centromere separation. The lack of cohesion at the centromeres does not correlate with Psm3 acetylation or cohesin levels at the centromeres, but is associated ith significantly reduced recruitment of the cohesin regulator Pds5. The SAC activation in this context is dependent on Smc5/6 function, which is required to remove cohesin from chromosome arms but not centromeres. The mitotic defects caused by Smc5/6 and Eso1 dysfunction are cosuppressed in double mutants. This identifies a novel function (or functions) for Eso1 and Smc5/6 at centromeres and extends the functional relationships between these SMC complexes.


Assuntos
Acetiltransferases/metabolismo , Proteínas de Ciclo Celular/metabolismo , Centrômero/enzimologia , Proteínas Nucleares/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteínas de Schizosaccharomyces pombe/metabolismo , Acetiltransferases/genética , Adenosina Trifosfatases/metabolismo , Adenosina Trifosfatases/fisiologia , Proteínas de Ciclo Celular/genética , Cromátides/enzimologia , Proteínas Cromossômicas não Histona/metabolismo , Segregação de Cromossomos , Cromossomos Fúngicos/enzimologia , Proteínas de Ligação a DNA/metabolismo , Proteínas de Ligação a DNA/fisiologia , Mitose/fisiologia , Complexos Multiproteicos/metabolismo , Complexos Multiproteicos/fisiologia , Proteínas Nucleares/genética , Fase S , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Schizosaccharomyces/citologia , Schizosaccharomyces/enzimologia , Proteínas de Schizosaccharomyces pombe/genética , Coesinas
2.
Mol Cell ; 63(3): 385-96, 2016 08 04.
Artigo em Inglês | MEDLINE | ID: mdl-27397685

RESUMO

Replisome assembly at eukaryotic replication forks connects the DNA helicase to DNA polymerases and many other factors. The helicase binds the leading-strand polymerase directly, but is connected to the Pol α lagging-strand polymerase by the trimeric adaptor Ctf4. Here, we identify new Ctf4 partners in addition to Pol α and helicase, all of which contain a "Ctf4-interacting-peptide" or CIP-box. Crystallographic analysis classifies CIP-boxes into two related groups that target different sites on Ctf4. Mutations in the CIP-box motifs of the Dna2 nuclease or the rDNA-associated protein Tof2 do not perturb DNA synthesis genome-wide, but instead lead to a dramatic shortening of chromosome 12 that contains the large array of rDNA repeats. Our data reveal unexpected complexity of Ctf4 function, as a hub that connects multiple accessory factors to the replisome. Most strikingly, Ctf4-dependent recruitment of CIP-box proteins couples other processes to DNA synthesis, including rDNA copy-number regulation.


Assuntos
Cromossomos Fúngicos/enzimologia , DNA Helicases/metabolismo , DNA Fúngico/biossíntese , DNA Ribossômico/biossíntese , Proteínas de Ligação a DNA/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Fase S , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/enzimologia , Sítios de Ligação , Cromossomos Fúngicos/genética , DNA Helicases/genética , DNA Polimerase I/metabolismo , DNA Fúngico/genética , DNA Ribossômico/genética , Proteínas de Ligação a DNA/genética , Dosagem de Genes , Peptídeos e Proteínas de Sinalização Intracelular/genética , Modelos Moleculares , Complexos Multiproteicos , Mutação , Ligação Proteica , Domínios e Motivos de Interação entre Proteínas , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/crescimento & desenvolvimento , Proteínas de Saccharomyces cerevisiae/genética , Relação Estrutura-Atividade
3.
Mol Cell ; 63(3): 371-84, 2016 08 04.
Artigo em Inglês | MEDLINE | ID: mdl-27397686

RESUMO

DNA replication during S phase is accompanied by establishment of sister chromatid cohesion to ensure faithful chromosome segregation. The Eco1 acetyltransferase, helped by factors including Ctf4 and Chl1, concomitantly acetylates the chromosomal cohesin complex to stabilize its cohesive links. Here we show that Ctf4 recruits the Chl1 helicase to the replisome via a conserved interaction motif that Chl1 shares with GINS and polymerase α. We visualize recruitment by EM analysis of a reconstituted Chl1-Ctf4-GINS assembly. The Chl1 helicase facilitates replication fork progression under conditions of nucleotide depletion, partly independently of Ctf4 interaction. Conversely, Ctf4 interaction, but not helicase activity, is required for Chl1's role in sister chromatid cohesion. A physical interaction between Chl1 and the cohesin complex during S phase suggests that Chl1 contacts cohesin to facilitate its acetylation. Our results reveal how Ctf4 forms a replisomal interaction hub that coordinates replication fork progression and sister chromatid cohesion establishment.


Assuntos
Cromátides/enzimologia , Proteínas Cromossômicas não Histona/metabolismo , Cromossomos Fúngicos/enzimologia , DNA Fúngico/biossíntese , Proteínas de Ligação a DNA/metabolismo , Fase S , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/enzimologia , Acetiltransferases/metabolismo , Acilação , Proteínas de Ciclo Celular/metabolismo , Cromátides/genética , Proteínas Cromossômicas não Histona/genética , Proteínas Cromossômicas não Histona/ultraestrutura , Cromossomos Fúngicos/genética , DNA Fúngico/genética , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/ultraestrutura , Microscopia Eletrônica de Transmissão , Modelos Moleculares , Complexos Multiproteicos , Proteínas Nucleares/metabolismo , Ligação Proteica , Domínios e Motivos de Interação entre Proteínas , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/crescimento & desenvolvimento , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/ultraestrutura , Relação Estrutura-Atividade , Fatores de Tempo , Coesinas
4.
Nucleic Acids Res ; 44(8): 3728-38, 2016 05 05.
Artigo em Inglês | MEDLINE | ID: mdl-26883631

RESUMO

Damaged DNA can be repaired by removal and re-synthesis of up to 30 nucleotides during base or nucleotide excision repair. An important question is what happens when many more nucleotides are removed, resulting in long single-stranded DNA (ssDNA) lesions. Such lesions appear on chromosomes during telomere damage, double strand break repair or after the UV damage of stationary phase cells. Here, we show that long single-stranded lesions, formed at dysfunctional telomeres in budding yeast, are re-synthesized when cells are removed from the telomere-damaging environment. This process requires Pol32, an accessory factor of Polymerase δ. However, re-synthesis takes place even when the telomere-damaging conditions persist, in which case the accessory factors of both polymerases δ and ε are required, and surprisingly, salt. Salt added to the medium facilitates the DNA synthesis, independently of the osmotic stress responses. These results provide unexpected insights into the DNA metabolism and challenge the current view on cellular responses to telomere dysfunction.


Assuntos
DNA Polimerase III/metabolismo , DNA Polimerase II/metabolismo , Reparo do DNA , Cloreto de Sódio/farmacologia , Telômero/enzimologia , Proliferação de Células/efeitos dos fármacos , Cromossomos Fúngicos/efeitos dos fármacos , Cromossomos Fúngicos/enzimologia , Cromossomos Fúngicos/metabolismo , DNA Polimerase I/fisiologia , DNA Fúngico/biossíntese , Proteínas de Ligação a DNA/metabolismo , DNA Polimerase Dirigida por DNA/metabolismo , DNA Polimerase Dirigida por DNA/fisiologia , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Fleomicinas/farmacologia , Saccharomyces cerevisiae/efeitos dos fármacos , Saccharomyces cerevisiae/enzimologia , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/fisiologia , Telômero/efeitos dos fármacos , Telômero/metabolismo , Homeostase do Telômero , Fatores de Transcrição/metabolismo
5.
J Cell Sci ; 123(Pt 12): 2025-34, 2010 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-20483956

RESUMO

The assembly, disassembly and dynamic movement of macromolecules are integral to cell physiology. The ubiquitin-selective chaperone Cdc48 (p97 in Metazoa), an AAA-ATPase, might facilitate such processes in the cell cycle. Cdc48 in budding yeast was initially isolated from a mitotic mutant. However, its function in mitosis remained elusive. Here we show that the temperature-sensitive cdc48-3 mutant and depletion of cofactor Shp1 (p47 in Metazoa) cause cell-cycle arrest at metaphase. The arrest is due to a defect in bipolar attachment of the kinetochore that activates the spindle checkpoint. Furthermore, Cdc48-Shp1 positively regulates Glc7/protein phosphatase 1 by facilitating nuclear localization of Glc7, whereas it opposes Ipl1/Aurora B kinase activity. Thus, we propose that Cdc48-Shp1 promotes nuclear accumulation of Glc7 to counteract Ipl1 activity. Our results identify Cdc48 and Shp1 as critical components that balance the kinase and phosphatase activities at the kinetochore in order to achieve stable bipolar attachment.


Assuntos
Adenosina Trifosfatases/metabolismo , Proteínas de Ciclo Celular/metabolismo , Cromossomos Fúngicos/enzimologia , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/enzimologia , Adenosina Trifosfatases/genética , Aurora Quinases , Ciclo Celular , Proteínas de Ciclo Celular/genética , Núcleo Celular/enzimologia , Núcleo Celular/genética , Núcleo Celular/metabolismo , Cromossomos Fúngicos/genética , Peptídeos e Proteínas de Sinalização Intracelular/genética , Cinetocoros/enzimologia , Proteína Fosfatase 1/genética , Proteína Fosfatase 1/metabolismo , Proteínas Serina-Treonina Quinases/genética , Transporte Proteico , Saccharomyces cerevisiae/citologia , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteína com Valosina
6.
Genetics ; 172(2): 783-94, 2006 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-16204216

RESUMO

The Smt3 (SUMO) protein is conjugated to substrate proteins through a cascade of E1, E2, and E3 enzymes. In budding yeast, the E3 step in sumoylation is largely controlled by Siz1p and Siz2p. Analysis of Siz- cells shows that SUMO E3 is required for minichromosome segregation and thus has a positive role in maintaining the fidelity of mitotic transmission of genetic information. Sumoylation of the carboxy-terminus of Top2p, a known SUMO target, is mediated by Siz1p and Siz2p both in vivo and in vitro. Sumoylation in vitro reveals that Top2p is an extremely potent substrate for Smt3p conjugation and that chromatin-bound Top2p can still be sumoylated, unlike many other SUMO substrates. By combining mutations in the TOP2 sumoylation sites and the SIZ1 and SIZ2 genes we demonstrate that the minichromosome segregation defect and dicentric minichromosome stabilization, both characteristic for Smt3p-E3-deficient cells, are mediated by the lack of Top2p sumoylation in these cells. A role for Smt3p-modification as a signal for Top2p targeting to pericentromeric regions was suggested by an analysis of Top2p-Smt3p fusion. We propose a model for the positive control of the centromeric pool of Top2p, required for high segregation fidelity, by Smt3p modification.


Assuntos
Instabilidade Cromossômica/genética , Cromossomos Fúngicos/genética , DNA Topoisomerases Tipo II/metabolismo , Proteína SUMO-1/metabolismo , Proteínas de Saccharomyces cerevisiae/fisiologia , Ubiquitina-Proteína Ligases/fisiologia , Sequência de Aminoácidos , Centrômero/genética , Centrômero/metabolismo , Cromossomos Fúngicos/enzimologia , Sondas de DNA , Epistasia Genética , Dados de Sequência Molecular , Proteínas Repressoras/fisiologia , Proteínas Modificadoras Pequenas Relacionadas à Ubiquitina
7.
Nature ; 438(7064): 57-61, 2005 Nov 03.
Artigo em Inglês | MEDLINE | ID: mdl-16121131

RESUMO

Telomeres are the physical ends of eukaryotic chromosomes. Genetic studies have established that the baker's yeast Pif1p DNA helicase is a negative regulator of telomerase, the specialized reverse transcriptase that maintains telomeric DNA, but the biochemical basis for this inhibition was unknown. Here we show that in vitro, Pif1p reduces the processivity of telomerase and releases telomerase from telomeric oligonucleotides. The released telomerase is enzymatically active because it is able to lengthen a challenger oligonucleotide. In vivo, overexpression of Pif1p reduces telomerase association with telomeres, whereas depleting cells of Pif1p increases the levels of telomere-bound Est1p, a telomerase subunit that is present on the telomere when telomerase is active. We propose that Pif1p helicase activity limits telomerase action both in vivo and in vitro by displacing active telomerase from DNA ends.


Assuntos
DNA Helicases/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/citologia , Saccharomyces cerevisiae/enzimologia , Telomerase/metabolismo , Telômero/enzimologia , Cromossomos Fúngicos/enzimologia , Cromossomos Fúngicos/metabolismo , DNA Helicases/deficiência , DNA Helicases/genética , Primers do DNA/metabolismo , Proteínas de Ligação a DNA/metabolismo , Ligação Proteica , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Especificidade por Substrato , Telômero/metabolismo
8.
Genes Cells ; 10(4): 297-309, 2005 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-15773893

RESUMO

Early in eukaryotic cell cycle, a pre-RC is assembled at each replication origin with ORC, Cdc6, Cdt1 and Mcm2-7 proteins to license the origin for use in the subsequent S phase. Licensed origin must then be activated by S-Cdk and Ddk. At the onset of S phase, RPA is loaded on to the ARS in a reaction stimulated by S-Cdk and Ddk, followed by Cdc45-dependent loading of pol alpha, -delta, and -epsilon. This study examines cell cycle-dependent localization of pol alpha, -delta and -epsilon in Saccharomyces cerevisiae using immuno-histochemical and chromatin immuno-precipitation methods. The results show that pol alpha, -delta, or -epsilon localizes on chromatin as punctate foci at all stages of the cell cycle. However, some foci overlap with or are adjacent to foci pulse-labeled with bromodeoxyuridine during S phase, indicating these are replicating foci. DNA microarray analysis localized pol alpha, -delta, and -epsilon to early firing ARSs on yeast chromosome III and VI at the beginning of S phase. These data collectively suggest that bidirectional replication occurs at specific foci in yeast chromosomes and that pol alpha, -delta, and -epsilon localize and function together at multiple replication forks during S phase.


Assuntos
DNA Polimerase II/metabolismo , DNA Polimerase I/metabolismo , DNA Polimerase beta/metabolismo , Replicação do DNA/fisiologia , Saccharomyces cerevisiae/enzimologia , Ciclo Celular/genética , Ciclo Celular/fisiologia , Imunoprecipitação da Cromatina , Cromossomos Fúngicos/enzimologia , Cromossomos Fúngicos/genética , DNA Polimerase I/genética , DNA Polimerase II/genética , DNA Polimerase beta/genética , Replicação do DNA/genética , Imuno-Histoquímica , Análise de Sequência com Séries de Oligonucleotídeos , Saccharomyces cerevisiae/genética
9.
J Biol Chem ; 280(7): 5249-57, 2005 Feb 18.
Artigo em Inglês | MEDLINE | ID: mdl-15591066

RESUMO

RecQ helicases play roles in telomere maintenance in cancerous human cells using the alternative lengthening of telomeres mechanism and in budding yeast lacking telomerase. Fission yeast lacking the catalytic subunit of telomerase (trt1(+)) up-regulate the expression of a previously uncharacterized sub-telomeric open reading frame as survivors emerge from crisis. Here we show that this open reading frame encodes a protein with homology to RecQ helicases such as the human Bloom's and Werner's syndrome proteins and that copies of the helicase gene are present on multiple chromosome ends. Characterization of the helicase transcript revealed a 7.6-kilobase RNA that was associated with polyribosomes, suggesting it is translated. A 3.6-kilobase domain of the helicase gene predicted to encode the region with catalytic activity was cloned, and both native and mutant forms of this domain were overexpressed in trt1(-) cells as they progressed through crisis. Overexpression of the native form caused cells to recover from crisis earlier than cells with a vector-only control, whereas overexpression of the mutant form caused delayed recovery from crisis. Taken together, the sequence homology, functional analysis, and site-directed mutagenesis indicate that the protein is likely a second fission yeast RecQ helicase (in addition to Rqh1) that participates in telomere metabolism during crisis. These results strengthen the notion that in multiple organisms RecQ helicases contribute to survival after telomere damage.


Assuntos
Adenosina Trifosfatases/química , Adenosina Trifosfatases/metabolismo , DNA Helicases/química , DNA Helicases/metabolismo , Proteínas de Schizosaccharomyces pombe/metabolismo , Schizosaccharomyces/citologia , Schizosaccharomyces/enzimologia , Homologia de Sequência de Aminoácidos , Telomerase/deficiência , Adenosina Trifosfatases/genética , Sequência de Aminoácidos , Cromossomos Fúngicos/enzimologia , Cromossomos Fúngicos/genética , Cromossomos Fúngicos/metabolismo , Clonagem Molecular , DNA Helicases/genética , Regulação Fúngica da Expressão Gênica , Humanos , Dados de Sequência Molecular , Fases de Leitura Aberta/genética , Filogenia , Polirribossomos/metabolismo , RNA Fúngico/genética , RNA Fúngico/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , RecQ Helicases , Schizosaccharomyces/genética , Schizosaccharomyces/crescimento & desenvolvimento , Proteínas de Schizosaccharomyces pombe/química , Proteínas de Schizosaccharomyces pombe/genética , Telomerase/genética , Telômero/enzimologia , Telômero/genética , Telômero/metabolismo
10.
Yeast ; 20(10): 905-12, 2003 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-12868059

RESUMO

The PfURA3 gene, which encodes orotidine-5'-phosphate decarboxylase, of osmotolerant yeast Pichia farinosa NFRI 3,621, was cloned by complementation of the ura3 mutation of Saccharomyces cerevisiae. The nucleotide sequence of the PfURA3 gene and its deduced amino acid sequence indicated that the gene encodes a protein (PfUra3p) of 267 amino acids. Pulsed-field gel electrophoresis and subsequent Southern blot analysis showed that the genome of P. farinosa NFRI 3621 consisted of seven chromosomes, each approximately 1.1-2.2 Mb in size (11.8 Mb in total) and that PfURA3 was located on chromosome V. Pichia sorbitophila is considered as a synonym of P. farinosa. The genome of P. sorbitophila IFO10021 may consist of 12 chromosomes, each approximately 1.2-2.2 Mb in size. P. sorbitophila has two copies of URA3 genes, termed PsURA3 and PsURA30, which were located on chromosome VIII and III, respectively. The difference between PfURA3 and PsURA3 was only two amino acid substitutions, whereas that between PsURA3 and PsURA30 was six amino acid substitutions and the deletion of the C-terminal amino acid by a stop codon insertion. The sequences of PfURA3, PsURA3 and PsURA30 have been deposited in the DDBJ data library under Accession Nos AB071417, AB109042 and AB109043, respectively.


Assuntos
Cromossomos Fúngicos/genética , Proteínas Fúngicas/genética , Orotidina-5'-Fosfato Descarboxilase/genética , Pichia/genética , Sequência de Aminoácidos , Sequência de Bases , Southern Blotting , Mapeamento Cromossômico , Cromossomos Fúngicos/enzimologia , Clonagem Molecular , DNA Fúngico/química , DNA Fúngico/genética , Eletroforese em Gel de Campo Pulsado , Proteínas Fúngicas/metabolismo , Dados de Sequência Molecular , Orotidina-5'-Fosfato Descarboxilase/metabolismo , Pichia/enzimologia , Pichia/metabolismo , Reação em Cadeia da Polimerase , Alinhamento de Sequência , Análise de Sequência de DNA , Transformação Genética/genética , Transformação Genética/fisiologia
11.
Curr Opin Genet Dev ; 10(2): 169-77, 2000 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-10753788

RESUMO

Telomere functions vary as the cell cycle progresses. Recent results highlight fluctuating associations between telomeres and DNA polymerases, DNA-damage repair proteins, and centrosome components. These associations reflect diverse roles of telomeres in chromosome maintenance and in the orchestration of chromosome movements during meiosis.


Assuntos
Cromossomos Fúngicos/genética , Saccharomyces cerevisiae/genética , Schizosaccharomyces/genética , Telômero/genética , Animais , Ciclo Celular/genética , Cromossomos Fúngicos/enzimologia , Humanos , Saccharomyces cerevisiae/citologia , Saccharomyces cerevisiae/enzimologia , Schizosaccharomyces/citologia , Schizosaccharomyces/enzimologia , Telômero/enzimologia
12.
J Cell Biol ; 117(5): 935-48, 1992 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-1315786

RESUMO

Topoisomerase II (topoII) and RAP1 (Repressor Activator Protein 1) are two abundant nuclear proteins with proposed structural roles in the higher-order organization of chromosomes. Both proteins co-fractionate as components of nuclear scaffolds from vegetatively growing yeast cells, and both proteins are present as components of pachytene chromosome, co-fractionating with an insoluble subfraction of meiotic nuclei. Immunolocalization using antibodies specific for topoII shows staining of an axial core of the yeast meiotic chromosome, extending the length of the synaptonemal complex. RAP1, on the other hand, is located at the ends of the paired bivalent chromosomes, consistent with its ability to bind telomeric sequences in vitro. In interphase nuclei, again in contrast to anti-topoII, anti-RAP1 gives a distinctly punctate staining that is located primarily at the nuclear periphery. Approximately 16 brightly staining foci can be identified in a diploid nucleus stained with anti-RAP1 antibodies, suggesting that telomeres are grouped together, perhaps through interaction with the nuclear envelope.


Assuntos
Núcleo Celular/química , Cromossomos Fúngicos/química , DNA Topoisomerases Tipo II/análise , Proteínas de Ligação ao GTP/análise , Saccharomyces cerevisiae/química , Sequência de Bases , Sítios de Ligação/genética , Núcleo Celular/enzimologia , Cromossomos Fúngicos/enzimologia , Imunofluorescência , Meiose/genética , Microscopia de Fluorescência , Dados de Sequência Molecular , Proteínas Proto-Oncogênicas/análise , Saccharomyces cerevisiae/enzimologia , Saccharomyces cerevisiae/genética , Proteínas rap de Ligação ao GTP
13.
Genes Dev ; 5(12B): 2420-30, 1991 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-1836444

RESUMO

In filamentous fungi, chitin is a structural component of morphologically distinct structures assembled during various phases of growth and development. To investigate the role of chitin synthase in cell wall biogenesis in Neurospora crassa, we cloned a chitin synthase structural gene and examined the consequences of its inactivation. Using degenerate oligonucleotide mixtures designed on the basis of conserved sequences of the Saccharomyces cerevisiae CHS1 and CHS2 polypeptides, a DNA fragment encoding a similar predicted amino acid sequence was amplified from N. crassa genomic DNA. This product was used to probe N. crassa libraries for a gene homologous to one of the yeast genes. Full-length genomic and partial cDNA clones were identified, isolated, and sequenced. The amino acid sequence deduced from a cloned 3.4-kb gene [designated chitin synthase 1 (chs-1)] was very similar to that of the S. cerevisiae CHS1 and CHS2 and the Candida albicans CHS1 polypeptides. Inactivation of the N. crassa chs-1 gene by repeat-induced point mutation produced slow-growing progeny that formed hyphae with morphologic abnormalities. The chs-1RIP phenotype was correlated with a significant reduction in chitin synthase activity. Calcofluor staining of the chs-1RIP strain cross-walls, residual chitin synthase activity, and the increased sensitivity of the chs-1RIP strain to Nikkomycin Z suggest that N. crassa produces additional chitin synthase that can participate in cell wall formation.


Assuntos
Parede Celular/fisiologia , Quitina Sintase/fisiologia , Neurospora crassa/enzimologia , Sequência de Aminoácidos , Sequência de Bases , Parede Celular/enzimologia , Quitina Sintase/genética , Mapeamento Cromossômico , Cromossomos Fúngicos/enzimologia , Clonagem Molecular , Proteínas Fúngicas/genética , Genes Fúngicos/fisiologia , Dados de Sequência Molecular , Neurospora crassa/genética , Neurospora crassa/crescimento & desenvolvimento , Homologia de Sequência do Ácido Nucleico
14.
Genes Dev ; 5(12B): 2392-404, 1991 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-1752435

RESUMO

The mek1 (meiotic kinase) mutant of Saccharomyces cerevisiae was isolated in a screen for sporulation-proficient, meiotic-lethal mutants. Diploids homozygous for a mek1 null mutation produce only 13% viable spores. mek1 spore inviability is rescued by a spo13 mutation, which causes cells to bypass the meiosis I division. In a mek1 null mutant, meiotic recombination is reduced but not completely eliminated. Nuclear spreads of meiotic chromosomes from mek1 diploids reveal numerous stretches of synaptonemal complex (SC) that are shorter than wild-type SCs. Analysis of a mek1::lacZ fusion gene and Northern blot hybridization demonstrate that the MEK1 transcript is present only in meiosis. The sequence of the MEK1 gene predicts a 56.8-kD protein with homology to serine-threonine protein kinases. The MEK1 gene maps to chromosome XV, 13 cM proximal to CDC64. Models for the function of the MEK1 gene product are proposed.


Assuntos
Cromossomos Fúngicos/enzimologia , Meiose , Proteínas Quinases/genética , Recombinação Genética , Complexo Sinaptonêmico , Sequência de Aminoácidos , Sequência de Bases , Genes Fúngicos , Dados de Sequência Molecular , Mutação , Saccharomyces cerevisiae/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...